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Relational data often has multi-structured columns



Log data contains many types of events



How is your data structured?

Is all your data structured identically?

How to map input structure(s) to desired output?



Analysis and visualization
tools generally require

tabular and homogenous data



Data is increasingly
non-tabular or heterogeneous



The challenge
To drive more 

value here!How do we make this more efficient?

Data



Conventional approaches inhibit self-service

Hand-Coding Search / ETL



Conventional approaches inhibit self-service
Users must understand complex regular expressions.

[A-Z]+(\-[A-Z]+)?\|[A-Z0-9]+/[0-9]{9}/([A-Z]+/[0-9]+)?

MOC|SFR/621630263|/
MTC|ORG1/638590539|/
SMS-MT|SMSC/600000000|BOY/658510643
SMS-MO|SMSC/600000000|SFR/634989093
SMS-MO|SMSC/600000000|ORG1/608564604



Pattern profiling combines
automatic pattern discovery

with interactive visualizations



Understanding data through profiling
For ordinal data (numbers, 
datetimes, ...), profiles can 
compactly and efficiently 
convey data distribution. 



Understanding data through profiling

For well typed data, profiles 
can indicate the prevalence 
of valid, invalid, and null 
values. 



Understanding data through profiling

For categorical data with a 
limited number of categories, 
profiles provide information 
on the prevalence of each 
category.



The nasty case of text

Categorical profiles fall back to top k 
values.

Data quality can only differentiate 
between null and non-null values.



Understanding data through patterns

Through pattern based 
representations of text, we can 
see common and anomalous 
patterns and drill down to 
specific records more easily.



What?

• Automatically detects and 
displays formatting 
patterns within a column

• Visually summarizes 
content of a column into 
common and anomalous 
patterns

Pattern profiling



Why?

• Users can quickly 
understand and correct 
discrepancies within each 
column

• Provides starting point for 
users to identify and 
select subsets of records 
to transform

Pattern profiling



Pattern profiling
How?

• Cluster records into 
meaningful sub-groups

• Users interact with 
sub-groups and example 
records

• Predict transformations 
to apply across the data



References:

Hyunh, Miller, and Karger, ISWC 2007.
Potluck: Data Mash-Up Tool for Casual Users.



Demo



What is in a pattern?
Length

Token

Position

Semantic 
meaning



What is in a pattern?



Capturing semi-structure with patterns

[A-Z]+(\-[A-Z]+)?\|[A-Z0-9]+/[0-9]{9}/([A-Z]+/[0-9]+)? (all five rows)

            [A-Z]+|[A-Z0-9]+/[0-9]{9}/ (first two rows)

    [A-Z]+\-[A-Z]+|[A-Z0-9]+/[0-9]{9}/[A-Z]+/[0-9]+ (last three rows)



Capturing semi-structure with patterns

                  ...<Product Code>...

              [A-Z]+|<Product Code>/

      [A-Z]+\-[A-Z]+|<Product Code>/[A-Z]+/[0-9]+



Making sense of hierarchical pattern structures 

                  ...<Product Code>... (union of two structures)

              [A-Z]+|<Product Code>/

      [A-Z]+\-[A-Z]+|<Product Code>/[A-Z]+/[0-9]+



Making sense of hierarchical pattern structures 
Cluster more concrete, lower-level patterns 
into more abstract, higher-level 
representations to give overviews of data.

Help the user transition from the higher-level 
token and wild-card representations to the 
literal data they encounter.

Abstract Concrete



Examples as links between abstract and concrete

Example data can help 
users traverse the 
hierarchy of patterns and 
understand their context.

Abstract

Concrete



Examples as links between abstract and concrete



Inspiration from PADS
PADS (processing arbitrary data 
streams) is a data description language. 

Format descriptions written in PADS are 
then used to process and structure data.

For more see:
* Fisher and Gruber 2003, PADS: Processing Arbitrary Data Streams.
* Fisher et al. 2008, From Dirt to Shovels: Fully Automatic Tool 
Generation from Ad Hoc Data.
* Xi et al. 2009, Ad Hoc Data and the Token Ambiguity Problem. Figure 1. Components of the IR (Fisher et al. 2008).



From dirt to shovels
Aims to fully automate PADS format 
generation from input data.

Does so by tokenizing the input data, 
discovering structure across tokenized 
records, and refining until minimal spec 
reached.

Figure 4. Architecture of the automatic 
tool-generation engine (Fisher et al. 2008).



Tokenization and lexing

Wildcard
{any}

Semantic Tokens
{ip-address}

{time}
{hashtag}
{email}

Character Tokens
{alpha-numeric}

{alpha}
{upper}
{lower}
{digit}
{delim}

Literal Tokens
{A-Za-z}
{0-9}
{/}
{-}
{_}
{|}
{,}
{ }
{<}
{>}

Specify a token tree going from most general (wildcard) to most specific 
(literal). Where possible, include parent child relationships.



Tokenization and lexing

192.168.2.255:GET
193.168.3.344:PUT
193.145.13.45:POST

{digit}{3}{delim}{digit}{3}{delim}{digit}{delim}{digit}{3}
{:}{upper}{3}
{digit}{3}{delim}{digit}{3}{delim}{digit}{2}{delim}{digit}{2}
{:}{upper}{4}
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Structure discovery informs aggregation
Determine for a set of tokens S and data D which tokens are union tokens and 
which tokens are struct tokens.

Given tokens {{a}, {b}}, a union relationship implies {a}|{b} and a struct 
relationship implies ({a}{b}).



Structure discovery informs aggregation
Determine for a set of tokens S and data D which tokens are union tokens and 
which tokens are struct tokens.

for each token T in S:
  define histogram H[T] = distribution of number of matches of T over D

for each histogram H1 in H:
  for each histogram H2 in H:
    define E[H1][H2] = symmetric_relative_entropy(H1, H2)

define clusters C = agglomerative clustering with distance metric E

For more on structure discovery see: 
Fisher et al. 2008, From Dirt to Shovels: Fully Automatic Tool Generation from Ad Hoc Data.



Structure discovery informs aggregation
Determine for a set of tokens S and data D which tokens are union tokens and 
which tokens are struct tokens.

for each cluster C1 in C:
  if histograms [...C1] have high coverage and narrow distribution:
    C1 is struct
  if histograms [...C1] have lower coverage and wider distribution:
    C1 is union 
    
    

Figure 6. (a)-(e) are struct tokens, (f)-(g) are union tokens (Fisher et al. 2008).
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Pattern aggregation
Given a pair of patterns describing the data, determine how to combine and 
generalize.

Use structure discovery to suggest possible struct and union tokens.

Align tokens (longest common subsequence) taking into account union and struct 
tokens.

Use token hierarchy to combine non-aligned tokens.



Token hierarchy informs aggregation

With {upper}{lower},{foo}{bar} as union clusters

Align {upper}{foo}
    {lower}{bar}

Use semantic token hierarchy from IR {upper}|{lower} = {alpha}, {foo}|{bar} = {foobar}

  {upper}{foo}
+ {lower}{bar}
= {alpha}{foobar}

{upper},{lower},{alpha},{foo},{bar},{foobar}
{upper}|{lower} = {alpha}
{foo}|{bar} = {foobar}

IR



Pattern aggregation
Given a pair of patterns describing the data, determine how to combine and 
generalize.

Use structure discovery to suggest possible struct and union tokens.

Use token alignment (longest common subsequence) along struct and union 
tokens to find shared structure.

Use token hierarchy to combine non-aligned tokens.

Score candidate aggregations.



Scoring candidate aggregations
define score(pattern):
  nwildcards = count([{t} is {any} for {t} in pattern])
  nkleene    = count([{t} has {*} for {t} in pattern])
  nsemantics = length(intersection(semantic_tokens, pattern))
  nbasic     = length(intersection(basic_tokens, pattern))
  nstruct    = length(intersection(struct_tokens, pattern))

  score = -(w1)(nwildcards) - (w2)(nkleene) - (w3)nsemantics +
           (w4)(nbasic) + (w5)(nstruct)

  return score / length(pattern)



Pattern aggregation continued...
for each pattern {a} in patterns:
  for each pattern {b} in patterns:
    {parent}, score = combine_patterns({a}, {b})
    scores[{a}][{b}] = {{parent}, score}

sort scores desc

for each {a}, {b}, {parent}, score in scores:
  # if disjoint (neither child has found a better parent)
  if {a}, {b} in patterns:
    remove {a}, {b} from patterns
    add {parent} to patterns

# stop at the {root} pattern
repeat until only one pattern present 



Generating interactive examples

For each set of candidate patterns, run 
conditional aggregate queries to 
accumulate example records.

Interact within a pattern by using 
capturing groups and matching across 
example records.

digit 2 - digit 2 → ([0-9]{2})(-)([0-9]{2})
$n captures the nth token group



Extensions
Injecting supervision



Injecting Supervision
Tuning aggregation scoring through human-in-the-loop feedback

Figure 6. Predictive Interaction: The Guide / Decide Loop (Heer, Hellerstein, Kandel 2015).



Injecting Supervision
The token ambiguity problem

192.168.2.255
Option 1: int ‘.’ int ‘.’ int ‘.’ int
Option 2: float ‘.’ float
Option 3: ip-address

Figure 2. SeqSet from parsing “2.2-13.4” (Xi et al. 2009).

Xi et al. train HMMs and 
Hierarchical SVMs to traverse the 
tokenization paths, assign 
probabilities, pick best 
tokenization (2009).



Extensions
Injecting supervision

Improving performance



Thanks!
Michael Minar,
Athena Jiang,
Anish Doshi,

Lionel Michel,
and others @trifacta


