
Intelligent pattern profiling

Trifacta (@trifacta)
Karthik Sethuraman
Sean Kandel

How is your data structured?

How is your data structured?

Is all your data structured identically?

How is your data structured?

Is all your data structured identically?

How to map input structure(s) to desired output?

How is your data structured?

Is all your data structured identically?

How to map input structure(s) to desired output?

How is your data structured?

Is all your data structured identically?

How to map input structure(s) to desired output?

Relational data often has multi-structured columns

Log data contains many types of events

How is your data structured?

Is all your data structured identically?

How to map input structure(s) to desired output?

Analysis and visualization
tools generally require

tabular and homogenous data

Data is increasingly
non-tabular or heterogeneous

The challenge
To drive more

value here!How do we make this more efficient?

Data

Conventional approaches inhibit self-service

Hand-Coding Search / ETL

Conventional approaches inhibit self-service
Users must understand complex regular expressions.

[A-Z]+(\-[A-Z]+)?\|[A-Z0-9]+/[0-9]{9}/([A-Z]+/[0-9]+)?

MOC|SFR/621630263|/
MTC|ORG1/638590539|/
SMS-MT|SMSC/600000000|BOY/658510643
SMS-MO|SMSC/600000000|SFR/634989093
SMS-MO|SMSC/600000000|ORG1/608564604

Pattern profiling combines
automatic pattern discovery

with interactive visualizations

Understanding data through profiling
For ordinal data (numbers,
datetimes, ...), profiles can
compactly and efficiently
convey data distribution.

Understanding data through profiling

For well typed data, profiles
can indicate the prevalence
of valid, invalid, and null
values.

Understanding data through profiling

For categorical data with a
limited number of categories,
profiles provide information
on the prevalence of each
category.

The nasty case of text

Categorical profiles fall back to top k
values.

Data quality can only differentiate
between null and non-null values.

Understanding data through patterns

Through pattern based
representations of text, we can
see common and anomalous
patterns and drill down to
specific records more easily.

What?

• Automatically detects and
displays formatting
patterns within a column

• Visually summarizes
content of a column into
common and anomalous
patterns

Pattern profiling

Why?

• Users can quickly
understand and correct
discrepancies within each
column

• Provides starting point for
users to identify and
select subsets of records
to transform

Pattern profiling

Pattern profiling
How?

• Cluster records into
meaningful sub-groups

• Users interact with
sub-groups and example
records

• Predict transformations
to apply across the data

References:

Hyunh, Miller, and Karger, ISWC 2007.
Potluck: Data Mash-Up Tool for Casual Users.

Demo

What is in a pattern?
Length

Token

Position

Semantic
meaning

What is in a pattern?

Capturing semi-structure with patterns

[A-Z]+(\-[A-Z]+)?\|[A-Z0-9]+/[0-9]{9}/([A-Z]+/[0-9]+)? (all five rows)

 [A-Z]+|[A-Z0-9]+/[0-9]{9}/ (first two rows)

 [A-Z]+\-[A-Z]+|[A-Z0-9]+/[0-9]{9}/[A-Z]+/[0-9]+ (last three rows)

Capturing semi-structure with patterns

 ...<Product Code>...

 [A-Z]+|<Product Code>/

 [A-Z]+\-[A-Z]+|<Product Code>/[A-Z]+/[0-9]+

Making sense of hierarchical pattern structures

 ...<Product Code>... (union of two structures)

 [A-Z]+|<Product Code>/

 [A-Z]+\-[A-Z]+|<Product Code>/[A-Z]+/[0-9]+

Making sense of hierarchical pattern structures
Cluster more concrete, lower-level patterns
into more abstract, higher-level
representations to give overviews of data.

Help the user transition from the higher-level
token and wild-card representations to the
literal data they encounter.

Abstract Concrete

Examples as links between abstract and concrete

Example data can help
users traverse the
hierarchy of patterns and
understand their context.

Abstract

Concrete

Examples as links between abstract and concrete

Inspiration from PADS
PADS (processing arbitrary data
streams) is a data description language.

Format descriptions written in PADS are
then used to process and structure data.

For more see:
* Fisher and Gruber 2003, PADS: Processing Arbitrary Data Streams.
* Fisher et al. 2008, From Dirt to Shovels: Fully Automatic Tool
Generation from Ad Hoc Data.
* Xi et al. 2009, Ad Hoc Data and the Token Ambiguity Problem. Figure 1. Components of the IR (Fisher et al. 2008).

From dirt to shovels
Aims to fully automate PADS format
generation from input data.

Does so by tokenizing the input data,
discovering structure across tokenized
records, and refining until minimal spec
reached.

Figure 4. Architecture of the automatic
tool-generation engine (Fisher et al. 2008).

Tokenization and lexing

Wildcard
{any}

Semantic Tokens
{ip-address}

{time}
{hashtag}
{email}

Character Tokens
{alpha-numeric}

{alpha}
{upper}
{lower}
{digit}
{delim}

Literal Tokens
{A-Za-z}
{0-9}
{/}
{-}
{_}
{|}
{,}
{ }
{<}
{>}

Specify a token tree going from most general (wildcard) to most specific
(literal). Where possible, include parent child relationships.

Tokenization and lexing

192.168.2.255:GET
193.168.3.344:PUT
193.145.13.45:POST

{digit}{3}{delim}{digit}{3}{delim}{digit}{delim}{digit}{3}
{:}{upper}{3}
{digit}{3}{delim}{digit}{3}{delim}{digit}{2}{delim}{digit}{2}
{:}{upper}{4}

Pattern aggregation
Given a pair of patterns describing the data, determine how to combine and
generalize.

Pattern aggregation
Given a pair of patterns describing the data, determine how to combine and
generalize.

Use structure discovery to suggest possible struct and union tokens.

Structure discovery informs aggregation
Determine for a set of tokens S and data D which tokens are union tokens and
which tokens are struct tokens.

Structure discovery informs aggregation
Determine for a set of tokens S and data D which tokens are union tokens and
which tokens are struct tokens.

Given tokens {{a}, {b}}, a union relationship implies {a}|{b} and a struct
relationship implies ({a}{b}).

Structure discovery informs aggregation
Determine for a set of tokens S and data D which tokens are union tokens and
which tokens are struct tokens.

for each token T in S:
 define histogram H[T] = distribution of number of matches of T over D

for each histogram H1 in H:
 for each histogram H2 in H:
 define E[H1][H2] = symmetric_relative_entropy(H1, H2)

define clusters C = agglomerative clustering with distance metric E

For more on structure discovery see:
Fisher et al. 2008, From Dirt to Shovels: Fully Automatic Tool Generation from Ad Hoc Data.

Structure discovery informs aggregation
Determine for a set of tokens S and data D which tokens are union tokens and
which tokens are struct tokens.

for each cluster C1 in C:
 if histograms [...C1] have high coverage and narrow distribution:
 C1 is struct
 if histograms [...C1] have lower coverage and wider distribution:
 C1 is union

Figure 6. (a)-(e) are struct tokens, (f)-(g) are union tokens (Fisher et al. 2008).

Pattern aggregation
Given a pair of patterns describing the data, determine how to combine and
generalize.

Use structure discovery to suggest possible struct and union tokens.

Align tokens (longest common subsequence) taking into account union and struct
tokens.

Pattern aggregation
Given a pair of patterns describing the data, determine how to combine and
generalize.

Use structure discovery to suggest possible struct and union tokens.

Align tokens (longest common subsequence) taking into account union and struct
tokens.

Use token hierarchy to combine non-aligned tokens.

Token hierarchy informs aggregation

With {upper}{lower},{foo}{bar} as union clusters

Align {upper}{foo}
 {lower}{bar}

Use semantic token hierarchy from IR {upper}|{lower} = {alpha}, {foo}|{bar} = {foobar}

 {upper}{foo}
+ {lower}{bar}
= {alpha}{foobar}

{upper},{lower},{alpha},{foo},{bar},{foobar}
{upper}|{lower} = {alpha}
{foo}|{bar} = {foobar}

IR

Pattern aggregation
Given a pair of patterns describing the data, determine how to combine and
generalize.

Use structure discovery to suggest possible struct and union tokens.

Use token alignment (longest common subsequence) along struct and union
tokens to find shared structure.

Use token hierarchy to combine non-aligned tokens.

Score candidate aggregations.

Scoring candidate aggregations
define score(pattern):
 nwildcards = count([{t} is {any} for {t} in pattern])
 nkleene = count([{t} has {*} for {t} in pattern])
 nsemantics = length(intersection(semantic_tokens, pattern))
 nbasic = length(intersection(basic_tokens, pattern))
 nstruct = length(intersection(struct_tokens, pattern))

 score = -(w1)(nwildcards) - (w2)(nkleene) - (w3)nsemantics +
 (w4)(nbasic) + (w5)(nstruct)

 return score / length(pattern)

Pattern aggregation continued...
for each pattern {a} in patterns:
 for each pattern {b} in patterns:
 {parent}, score = combine_patterns({a}, {b})
 scores[{a}][{b}] = {{parent}, score}

sort scores desc

for each {a}, {b}, {parent}, score in scores:
 # if disjoint (neither child has found a better parent)
 if {a}, {b} in patterns:
 remove {a}, {b} from patterns
 add {parent} to patterns

stop at the {root} pattern
repeat until only one pattern present

Generating interactive examples

For each set of candidate patterns, run
conditional aggregate queries to
accumulate example records.

Interact within a pattern by using
capturing groups and matching across
example records.

digit 2 - digit 2 → ([0-9]{2})(-)([0-9]{2})
$n captures the nth token group

Extensions
Injecting supervision

Injecting Supervision
Tuning aggregation scoring through human-in-the-loop feedback

Figure 6. Predictive Interaction: The Guide / Decide Loop (Heer, Hellerstein, Kandel 2015).

Injecting Supervision
The token ambiguity problem

192.168.2.255
Option 1: int ‘.’ int ‘.’ int ‘.’ int
Option 2: float ‘.’ float
Option 3: ip-address

Figure 2. SeqSet from parsing “2.2-13.4” (Xi et al. 2009).

Xi et al. train HMMs and
Hierarchical SVMs to traverse the
tokenization paths, assign
probabilities, pick best
tokenization (2009).

Extensions
Injecting supervision

Improving performance

Thanks!
Michael Minar,
Athena Jiang,
Anish Doshi,

Lionel Michel,
and others @trifacta

