SYNTHETIC LIKELIHOOD APPROACH FOR QUANTIFYING MULTI-SCALE EPIDEMIC PROCESSES FROM LARGE AND COMPLEX DATA SETS

APPLICATION TO A VECTOR OF CHAGAS DISEASE

Corentin M. Barbu, Karthik Sethuraman & Michael Z. Levy

University of Pennsylvania

November 6, 2013

Synthetic likelihood for multi-scale epidemics

Barbu CM, Sethuraman K, Levy MZ

Why quantifiying multi-scale dynamic is crucial?

Epidemiological backgroun The importance of the nformation at multiple

Quantifying the spatio-temporal structure

Separating Temporal and spatial scale

simple stochastic mode

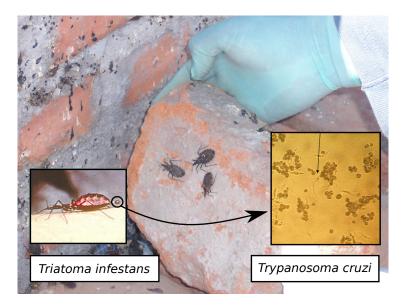
The spatial synthetic likelihood

Results

Dispersal frequency Re-infestation risk Validations

Discussion

Triatoma Infestans & Trypanosoma cruzi



Synthetic likelihood for multi-scale epidemics

Barbu CM, Sethuraman K, Levy MZ

Why quantifying multi-scale dynamic is crucial?

Epidemiological background

The importance of the information at multiple scales

Quantifying the spatio-temporal structure

Separating Temporal and spatial scale

simple stochastic mode

The spatial synthetic likelihood

Results

Dispersal frequency Re-infestation risk Validations

Discussion

CHAGAS DISEASE CONTROL

AVAILABLE TREATMENT AND PREVENTION METHODS

- No vaccine
- Imperfect treatment
- Vector control

TYPICAL VECTOR CONTROL SEQUENCE

- Initial treatment (blanket indoor spraying)
- Surveillance
 - ► Community reports → inspections
 - Infestation → retreatment

Synthetic likelihood for multi-scale epidemics

Barbu CM, Sethuraman K, Levy MZ

Why quantifying multi-scale dynamic is crucial?

Epidemiological background

The importance of the information at multiple scales

Quantifying the spatio-temporal structure

Separating Temporal and spatial scale

simple stochastic model

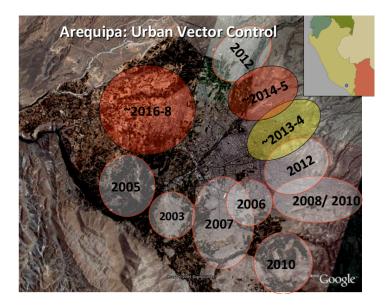
The spatial synthetic likelihood

Results

Dispersal frequency Re-infestation risk Validations

Discussion

THE CONTROL CAMPAIGN IN AREQUIPA



Synthetic likelihood for multi-scale epidemics

Barbu CM, Sethuraman K, Levy MZ

Why quantifiying multi-scale dynamic is crucial?

Epidemiological background

The importance of the information at multiple scales

Quantifying the spatio-temporal structure

Separating Temporal and spatial scale

simple stochastic mode

The spatial synthetic likelihood

Results

Dispersal frequency Re-infestation risk Validations

Discussior

ATTACK PHASE EVALUATION

- 10 years to treat half the city
- 60-85% participation in initial treatment
- very efficient treatment (>99% households cleared)

SURVEILLANCE

- redispersal from some non-treated households
- infected insects

Synthetic likelihood for multi-scale epidemics

Barbu CM, Sethuraman K, Levy MZ

Why quantifying multi-scale dynamic is crucial?

Epidemiological background

The importance of the nformation at multiple scales

Quantifying the spatio-temporal structure

Separating Temporal and spatial scale

A simple stochastic model

The spatial synthetic likelihood

Results

Dispersal frequency Re-infestation risk Validations

Discussion

CAN A REACTIVE SURVEILLANCE BE ENOUGH?

Foci R_0 thinking

As we detect/treat easily neighbors of reporting households:

- Local dispersal is already dealt with
- Medium range dispersal may be handled
- Large scale dispersal is catastrophic

Can we on average control a foci before it generates infestation too far to be handled?

Quantification of the dispersal at these three scales

Synthetic likelihood for multi-scale epidemics

Barbu CM, Sethuraman K, Levy MZ

Why quantifying multi-scale dynamic is crucial?

Epidemiological background

The importance of the information at multiple scales

Quantifying the spatio-temporal structure

Separating Temporal and spatial scale

simple stochastic model

The spatial synthetic likelihood

Results

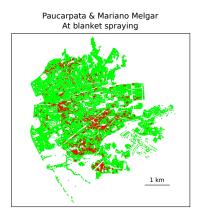
Dispersal frequency Re-infestation risk Validations

Discussion

LEVERAGING COMPLEX DATA

DECOUPLING SPATIAL AND TEMPORAL SCALE

• cross-sectional \rightarrow spatial patterns different scales



▶ longitudinal (400 households) \rightarrow time

Synthetic likelihood for multi-scale epidemics

Barbu CM, Sethuraman K, Levy MZ

Why quantifiying multi-scale dynamic is crucial?

pidemiological background

nformation at multiple

Quantifying the spatio-temporal structure

Separating Temporal and spatial scale

A simple stochastic model

The spatial synthetic likelihood

Results

Dispersal frequency Re-infestation risk Validations

Discussion

LEVERAGING COMPLEX DATA

DECOUPLING SPATIAL AND TEMPORAL SCALE

- \blacktriangleright cross-sectional \rightarrow spatial patterns different scales
- ► longitudinal (400 households)→ time Jerusalen January 2009 March 2011



Synthetic likelihood for multi-scale epidemics

Barbu CM, Sethuraman K, Levy MZ

Why quantifying multi-scale dynamic is crucial?

Epidemiological background

nformation at multiple

Quantifying the spatio-temporal structure

Separating Temporal and spatial scale

A simple stochastic mode

The spatial synthetic likelihood

Results

Dispersal frequency Re-infestation risk Validations

Discussion

COMBINE AND CONQUER

Cross-sectional study

- ► Unknown time → Impossible to fit the rate of movement
- ► Large scale → Relative rates at different scales

Longitudinal study

- ► Known time → Fit of the rate of movement
- Small scale
 Vague fit of large scale movement

BAYESIAN COMBINATION:

The posterior from cross-sectional study becomes the prior for the longitudinal study.

 \Rightarrow The cross-sectional study gives the relative abundance of the dispersal at different spatial scales, the longitudinal a study gives the time-scale.

Synthetic likelihood for multi-scale epidemics

Barbu CM, Sethuraman K, Levy MZ

Why quantifiying multi-scale dynamic is crucial?

pidemiological backgroun The importance of the nformation at multiple scales

Quantifying the spatio-temporal structure

Separating Temporal and spatial scale

A simple stochastic model

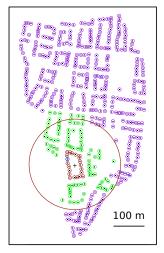
The spatial synthetic likelihood

Results

Dispersal frequency Re-infestation risk Validations

Discussior

THE HOP/SKIP/JUMP MODEL



THE HOP/SKIP/JUMP MODEL OF DISPERSAL

- hop: within a city-block
- skip: in neighboring city-blocks
- Jumps: anywhere

Synthetic likelihood for multi-scale epidemics

Barbu CM, Sethuraman K, Levy MZ

Why quantifiying multi-scale dynamic is crucial?

pidemiological backgroun he importance of the formation at multiple

Quantifying the spatio-temporal structure

Separating Temporal and spatial scale

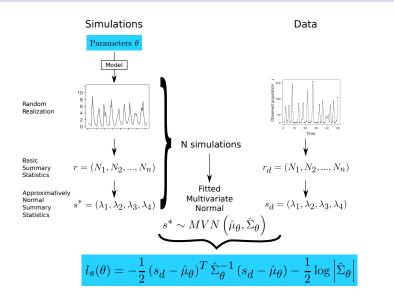
A simple stochastic model

The spatial synthetic likelihood

Results

Dispersal frequency Re-infestation risk Validations

Discussion



Wood, S. N. Statistical inference for noisy nonlinear ecological dynamic systems Nature, Nature Publishing Group, 2010, 466, 1102-1104

Synthetic likelihood for multi-scale epidemics

Barbu CM, Sethuraman K, Levy MZ

Why quantifiying multi-scale dynamic is crucial?

Epidemiological backgroun The importance of the nformation at multiple scales

Quantifying the spatio-temporal structure

Separating Temporal and spatial scale

A simple stochastic model

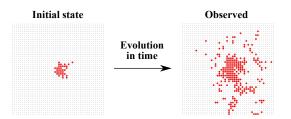
The spatial synthetic likelihood

Results

Dispersal frequency Re-infestation risk Validations

Discussion

Syn.Lik.(θ) = *P*(**Observed** Sum. Stats|Sum. Stats(θ))



Synthetic likelihood for multi-scale epidemics

Barbu CM, Sethuraman K, Levy MZ

Why quantifying multi-scale dynamic is crucial?

Epidemiological background

The importance of the information at multiple scales

Quantifying the spatio-temporal structure

Separating Temporal and spatial scale

A simple stochastic model

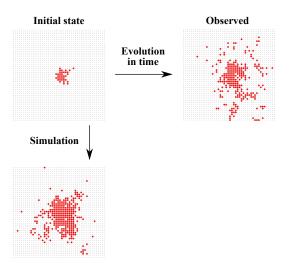
The spatial synthetic likelihood

Results

Dispersal frequency Re-infestation risk Validations

Discussion

Syn.Lik.(θ) = P (**Observed** Sum. Stats|Sum. Stats(θ))



Synthetic likelihood for multi-scale epidemics

Barbu CM, Sethuraman K, Levy MZ

Why quantifying multi-scale dynamic is crucial?

Epidemiological backgroun The importance of the

information at multiple scales

Quantifying the spatio-temporal structure

Separating Temporal and spatial scale

A simple stochastic mode

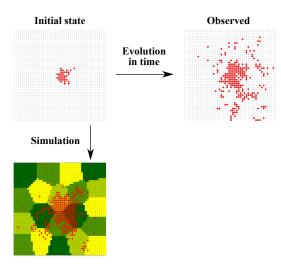
The spatial synthetic likelihood

Results

Dispersal frequency Re-infestation risk Validations

Discussion

Syn.Lik.(θ) = P (**Observed** Sum. Stats|Sum. Stats(θ))



Synthetic likelihood for multi-scale epidemics

Barbu CM, Sethuraman K, Levy MZ

Why quantifiying multi-scale dynamic is crucial?

pidemiological background

The importance of the information at multiple scales

Quantifying the spatio-temporal structure

Separating Temporal and spatial scale

A simple stochastic model

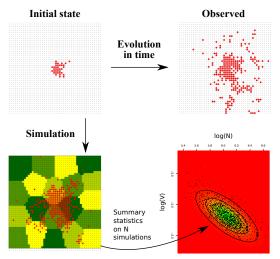
The spatial synthetic likelihood

Results

Dispersal frequency Re-infestation risk Validations

Discussion

Syn.Lik.(θ) = P (**Observed** Sum. Stats|Sum. Stats(θ))



Statistics Likelihood space

Synthetic likelihood for multi-scale epidemics

Barbu CM, Sethuraman K, Levy MZ

Why quantifiying multi-scale dynamic is crucial?

Epidemiological background The importance of the information at multiple

cales

Quantifying the spatio-temporal structure

Separating Temporal and spatial scale

A simple stochastic mode

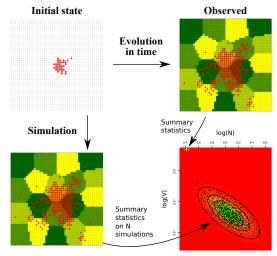
The spatial synthetic likelihood

Results

Dispersal frequency Re-infestation risk Validations

Discussion

Syn.Lik.(θ) = P (**Observed** Sum. Stats|Sum. Stats(θ))



Statistics Likelihood space

Synthetic likelihood for multi-scale epidemics

Barbu CM, Sethuraman K, Levy MZ

Why quantifying multi-scale dynamic is crucial?

Epidemiological background The importance of the information at multiple

scales

Quantifying the spatio-temporal structure

Separating Temporal and spatial scale

A simple stochastic mode

The spatial synthetic likelihood

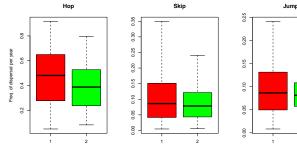
Results

Dispersal frequency Re-infestation risk Validations

Discussion

DISPERSAL FREQUENCY

IMPACT OF THE COMBINED ANALYSIS



MODES OF DISPERSAL

- hop ~ walk (68% [39-86])
- skip ~ flight (16% [0.8-45])
- jump ~ passive (15% [3-32])
- \Rightarrow Mainly active dispersal but significant passive dispersal

Jump 2

Synthetic likelihood for multi-scale epidemics

Barbu CM. Sethuraman K. Levv MZ

Separating Temporal and spatial scale

The spatial synthetic

Dispersal frequency

Re-infestation risk

RE-INFESTATION RISK FROM ONE HOUSEHOLD

AVERAGE TIME TO NEW INFESTATION Total: 1.8 years [1.0-4.3]

RE-INFESTATION FROM A SINGLE HOUSEHOLD

Time (years)	Same City Block	Diff. City Block	Neigh. City Blocks	Further away	Total
0.5	0.24	0.11	0.05	0.06	0.35
1.0	0.56	0.29	0.13	0.16	0.85
1.5	0.91	0.56	0.24	0.32	1.48
2.0	1.47	0.99	0.40	0.59	2.46
2.5	1.87	1.48	0.58	0.90	3.35
3.0	2.63	2.50	0.94	1.57	5.14

Average number of households infested, starting from a single household randomly chosen among the households in the cross-sectional study and using 1000 different parameter sets drawn from the posterior of the joint analysis. Synthetic likelihood for multi-scale epidemics

Barbu CM, Sethuraman K, Levy MZ

Why quantifiying multi-scale dynamic is crucial?

Pidemiological backgroun The importance of the Information at multiple

Quantifying the spatio-temporal structure

Separating Temporal and spatial scale

simple stochastic mode

The spatial synthetic likelihood

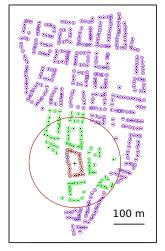
Results

Dispersal frequency

Re-infestation risk

Discussion

PUBLIC HEALTH IMPACT



IMPLICATIONS FOR THE SURVEILLANCE CAMPAIGN

- 1. Same city-block inspection and treatment can stop epidemics.
- 2. Inspection of neighboring city-blocks is not efficient.
- 3. Infestation \rightarrow treatment time must stay under 2 years.

Synthetic likelihood for multi-scale epidemics

Barbu CM, Sethuraman K, Levy MZ

Why quantifiying multi-scale dynamic is crucial?

pidemiological background he importance of the

nformation at multiple cales

Quantifying the spatio-temporal structure

Separating Temporal and spatial scale

simple stochastic model

The spatial synthetic likelihood

Results

Dispersal frequency

Re-infestation risk

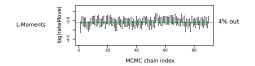
Validations

Discussion

VALIDATION OF THE ESTIMATES

INTERNAL VALIDATIONS

Synthetic likelihood approximation: coverage analysis



Synthetic likelihood for multi-scale epidemics

Barbu CM, Sethuraman K, Levy MZ

Why quantifiying multi-scale dynamic is crucial?

Epidemiological background

The importance of the information at multiple scales

Quantifying the spatio-temporal structure

Separating Temporal and spatial scale

A simple stochastic mode

The spatial synthetic likelihood

Results

Dispersal frequency Re-infestation risk

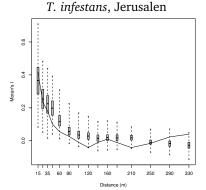
Validations

Discussion

VALIDATION OF THE ESTIMATES

INTERNAL VALIDATIONS

- Synthetic likelihood approximation: coverage analysis
- Adequacy of the model: autocorrelation generated by the model



Synthetic likelihood for multi-scale epidemics

Barbu CM, Sethuraman K, Levy MZ

Why quantifiying multi-scale dynamic is crucial?

Epidemiological backgroun The importance of the nformation at multiple scales

Quantifying the spatio-temporal structure

Separating Temporal and spatial scale

A simple stochastic model

The spatial synthetic likelihood

Results

Dispersal frequency Re-infestation risk

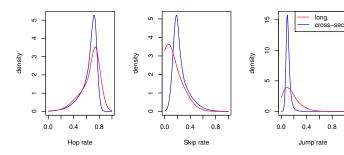
Validations

Discussion

VALIDATION OF THE ESTIMATES

INTERNAL VALIDATIONS

- Synthetic likelihood approximation: coverage analysis
- Adequacy of the model: autocorrelation generated by the model
- Consistency of the data: similar posteriors for the rates in independent analysis.



multi-scale epidemics Barbu CM, Sethuraman K.

Levy MZ

Synthetic

likelihood for

Why quantifiying multi-scale dynamic is crucial?

Epidemiological backgroun The importance of the nformation at multiple scales

Quantifying the spatio-temporal structure

Separating Temporal and spatial scale

simple stochastic model

The spatial synthetic likelihood

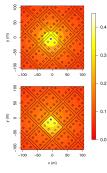
Results

Dispersal frequency Re-infestation risk

Validations

Discussion

CONNECTION WITH OTHER APPROACHES



EPIDEMIOLOGICAL DATA

- Average number of household found infested in close neighbors of infested, non-treated households, 6 months to 2 years after treatment: 0.27 [0.1-0.6].
- Autocorrelation analysis ^a

Barbu⁴, C. et al. The Effects of City Streets on an Urban Disease Vector PLOS Computational Biology, Public Library of Science, 2013, 9, e1002801 Synthetic likelihood for multi-scale epidemics

Barbu CM, Sethuraman K, Levy MZ

Why quantifiying multi-scale dynamic is crucial?

Epidemiological background The importance of the information at multiple

Quantifying the spatio-temporal structure

Separating Temporal and spatial scale

A simple stochastic model

The spatial synthetic likelihood

Results

Dispersal frequency Re-infestation risk Validations

Discussion

Connection with other approaches

CONNECTION WITH OTHER APPROACHES

MICRO-SATELLITE ANALYSIS

Micro-satellite analysis (Foley, in prep)

 Existence of migration at the scale of dozens of kilometers (Foley 2013). Synthetic likelihood for multi-scale epidemics

Barbu CM, Sethuraman K, Levy MZ

Why quantifiying multi-scale dynamic is crucial?

Epidemiological backgroun The importance of the nformation at multiple scales

Quantifying the spatio-temporal structure

Separating Temporal and spatial scale

A simple stochastic mode

The spatial synthetic likelihood

Results

Dispersal frequency Re-infestation risk Validations

Discussion

Connection with other approaches

Foley, E. A.; et al. 2013 Population structure of the Chagas disease vector, Triatoma infestans, at the urban-rural interface Molecular Ecology

STRENGTHS AND LIMITATIONS

EXISTING STRENGTHS

- Can handle arbitrary complex dispersal models
- Can combine cross-sectional and longitudinal datasets
- Can integrate large datasets by "small scale merging"

CURRENTLY WORKING ON

- Improving joint posteriors passing
- Improving usability (R package)
- Adding distance kernel handling

FUTURE DIRECTIONS

- Accounting for heterogeneity (households, observation)
- Using information from surveillance phase
- Integrating genetic information

Synthetic likelihood for multi-scale epidemics

Barbu CM, Sethuraman K, Levy MZ

Why quantifiying multi-scale dynamic is crucial?

pidemiological background

he importance of the nformation at multiple cales

Quantifying the spatio-temporal structure

Separating Temporal and spatial scale

A simple stochastic model

The spatial synthetic likelihood

Results

Dispersal frequency Re-infestation risk Validations

Discussior

Connection with other approaches

THANK YOU

FIELD TEAM IN AREQUIPA

Synthetic likelihood for multi-scale epidemics

Barbu CM, Sethuraman K, Levy MZ

Why quantifiying multi-scale dynamic is crucial?

Epidemiological backgroun The importance of the information at multiple scales

Quantifying the spatio-temporal structure

Separating Temporal and spatial scale

A simple stochastic model

The spatial synthetic likelihood

Results

Dispersal frequency Re-infestation risk Validations

Discussion

Connection with other approaches