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Triatoma Infestans & Trypanosoma cruzi

Triatoma infestans Trypanosoma cruzi
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CHAGAS DISEASE CONTROL

AVAILABLE TREATMENT AND PREVENTION METHODS

I No vaccine

I Imperfect treatment

I Vector control

TYPICAL VECTOR CONTROL SEQUENCE

I Initial treatment (blanket indoor spraying)

I Surveillance

I Community reports→ inspections
I Infestation→ retreatment
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THE CONTROL CAMPAIGN IN AREQUIPA
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HALF-WAY EVALUATION

ATTACK PHASE EVALUATION

I 10 years to treat half the city

I 60-85% participation in initial treatment

I very efficient treatment (>99% households cleared)

SURVEILLANCE

I redispersal from
some non-treated
households

I infected insects
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CAN A REACTIVE SURVEILLANCE BE ENOUGH?

FOCI R0 THINKING
As we detect/treat easily neighbors of reporting households:

I Local dispersal is already dealt with

I Medium range dispersal may be handled

I Large scale dispersal is catastrophic

Can we on average control a foci before it generates infestation
too far to be handled?

I Quantification of the dispersal at these three scales
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LEVERAGING COMPLEX DATA

DECOUPLING SPATIAL AND TEMPORAL SCALE

I cross-sectional→ spatial patterns different scales

Paucarpata & Mariano Melgar
At blanket spraying

1 km

I longitudinal (400 households)→ time
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LEVERAGING COMPLEX DATA

DECOUPLING SPATIAL AND TEMPORAL SCALE

I cross-sectional→ spatial patterns different scales

I longitudinal (400 households)→ time
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COMBINE AND CONQUER

Cross-sectional study
I Unknown time
→ Impossible to fit the
rate of movement

I Large scale
→ Relative rates at
different scales

Longitudinal study
I Known time
→ Fit of the rate of
movement

I Small scale
→ Vague fit of large
scale movement

BAYESIAN COMBINATION:
The posterior from cross-sectional study becomes the prior for
the longitudinal study.

⇒ The cross-sectional study gives the relative abundance of
the dispersal at different spatial scales, the longitudinal a study
gives the time-scale.
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THE HOP/SKIP/JUMP MODEL

+

100 m

THE HOP/SKIP/JUMP MODEL OF
DISPERSAL

I hop: within a city-block

I skip: in neighboring city-blocks

I Jumps: anywhere
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THE SYNTHETIC LIKELIHOOD

Model

Simulations

Approximatively
Normal
Summary
Statistics

N simulations

Fitted 
Multivariate 

Normal

}
Data

Random
Realization

Basic
Summary
Statistics

Wood, S. N. Statistical inference for noisy nonlinear ecological dynamic systems Nature, Nature
Publishing Group, 2010, 466, 1102-1104
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THE SYNTHETIC LIKELIHOOD

Syn.Lik .(θ) = P (Observed Sum. Stats|Sum. Stats(θ))

Evolution
in time

Initial state Observed
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THE SYNTHETIC LIKELIHOOD

Syn.Lik .(θ) = P (Observed Sum. Stats|Sum. Stats(θ))

Evolution
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DISPERSAL FREQUENCY

IMPACT OF THE COMBINED ANALYSIS
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MODES OF DISPERSAL

I hop ∼ walk (68% [39-86])

I skip ∼ flight (16% [0.8-45])

I jump ∼ passive (15% [3-32])

⇒ Mainly active dispersal but significant passive dispersal
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RE-INFESTATION RISK FROM ONE HOUSEHOLD

AVERAGE TIME TO NEW INFESTATION
Total: 1.8 years [1.0-4.3]

RE-INFESTATION FROM A SINGLE HOUSEHOLD

Time
(years)

Same
City

Block

Diff.
City

Block

Neigh.
City

Blocks

Further
away

Total

0.5 0.24 0.11 0.05 0.06 0.35
1.0 0.56 0.29 0.13 0.16 0.85
1.5 0.91 0.56 0.24 0.32 1.48
2.0 1.47 0.99 0.40 0.59 2.46
2.5 1.87 1.48 0.58 0.90 3.35
3.0 2.63 2.50 0.94 1.57 5.14

Average number of households infested, starting from a single
household randomly chosen among the households in the
cross-sectional study and using 1000 different parameter sets drawn
from the posterior of the joint analysis.
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PUBLIC HEALTH IMPACT

+

100 m

IMPLICATIONS FOR THE
SURVEILLANCE CAMPAIGN

1. Same city-block inspection and
treatment can stop epidemics.

2. Inspection of neighboring
city-blocks is not efficient.

3. Infestation→ treatment time
must stay under 2 years.
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VALIDATION OF THE ESTIMATES

INTERNAL VALIDATIONS

I Synthetic likelihood approximation: coverage analysis
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VALIDATION OF THE ESTIMATES

INTERNAL VALIDATIONS

I Synthetic likelihood approximation: coverage analysis

I Adequacy of the model: autocorrelation generated by the
model
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VALIDATION OF THE ESTIMATES

INTERNAL VALIDATIONS

I Synthetic likelihood approximation: coverage analysis

I Adequacy of the model: autocorrelation generated by the
model

I Consistency of the data: similar posteriors for the rates in
independent analysis.
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CONNECTION WITH OTHER APPROACHES

EPIDEMIOLOGICAL DATA

I Average number of household found
infested in close neighbors of infested,
non-treated households, 6 months to 2
years after treatment: 0.27 [0.1-0.6].

I Autocorrelation analysis a

a
Barbu, C. et al. The Effects of City Streets on an Urban Disease Vector
PLOS Computational Biology, Public Library of Science, 2013, 9,
e1002801
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CONNECTION WITH OTHER APPROACHES

MICRO-SATELLITE ANALYSIS

I Micro-satellite analysis (Foley, in prep)

I Existence of migration at the scale of dozens of kilometers
(Foley 2013).

Foley, E. A.; et al. 2013 Population structure of the Chagas disease vector, Triatoma infestans, at the
urban-rural interface Molecular Ecology
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STRENGTHS AND LIMITATIONS

EXISTING STRENGTHS

I Can handle arbitrary complex dispersal models

I Can combine cross-sectional and longitudinal datasets

I Can integrate large datasets by “small scale merging”

CURRENTLY WORKING ON

I Improving joint posteriors passing

I Improving usability (R package)

I Adding distance kernel handling

FUTURE DIRECTIONS

I Accounting for heterogeneity (households, observation)

I Using information from surveillance phase

I Integrating genetic information
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THANK YOU

FIELD TEAM IN AREQUIPA
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